The Effect of Multiple Representation-Based Scaffolding Strategy in Improving Chemical Literacy

Sunyono Sunyono(1,Mail), Annisa Meristin(2) | CountryCountry:


(1) University of Lampung, Indonesia
(2) University of Lampung, Indonesia

MailCorresponding Author

DOI 10.23960/jpp.v9.i2.201905
Metrics→
              
Indexing Site→


Download Full Text: PDF

Copyright (c) 2019 Sunyono Sunyono, Annisa Meristin


The effect multiple representation-based scaffolding strategy in improving chemistry literacy. Objective: This study aims tyo understand the effectiveness of multiple representations-based scaffolding strateg in the topics of electrolyte and non-electrolyte solutions to improve the chemistry literacy skills. Method: The research used a quasi-experiment design. The subjects were 78 students of the tenth grade at SMAN 5 Bandar Lampung. The data were analyzed using Tukey test and effect size. Findings: The increase in chemistry literacy abilities of the students in the experimental class was 96.00% influenced by the application of multiple representations learning with scaffolding strategy; meanwhile, it was only 89.00% for control class with no scaffolding. Conclusion: The scaffolding strategy based on multiple-representation in chemistry learning had a high level of effectiveness in improving chemistry literacy skills.

 

Keywords: Effectiveness, scaffolding, multiple representations, chemistry literacy

 

DOI: http://dx.doi.org/10.23960/jpp.v9.i2.201905


Abdurrahman. (2010). The role of quantum physics multiple representations to enhance concept mastery, generic science skills, and critical thinking disposition for preservice physics teacher students. Disertasi Doktor, Program Studi Pendidikan IPA, Universitas Pendidikan Indonesia (UPI), Bandung.

AbuJahjouh, Y. M. A. (2014). The effectiveness of blended e-learning forum in planning for science instruction. Journal of Turkish Science Education, 11(4), 3–16.

Agustina, T. (2013). Pengaruh pemberian bantuan scaffolding pada aktivitas belajar menggunakan model penemuan terbimbing terhadap hasil belajar fisika siswa SMA (Skripsi). Universitas Lampung, Bandar Lampung.

Astuti, Y. K. (2016). Literasi sains dalam pembelajaran IPA. E-journal Universitas Wiralodra, 7(3), 67–72.

Balitbang Depdikbud. (2011). TIMSS (Trends In International Mathematics and Science Study). International Survey. Tersedia di: http://litbang.kemdikbud.go.id/detail.php?id=214. Diakses: 28 Desember 2012.

Berthold, K., Tessa, H. S. E., & Alexander, R. (2009). Assisting self-explanation prompts are more effective than open prompts when learning with multiple representations. Instructional Science, 37, 45–363.

BouJaoude, S., & Barakat, H. (2003). Students’ problem solving strategies in stoichiometry and their relationships to conceptual understanding and learning approaches. Electronic Journal of Science Education, 7(3).

Bybee, R., & McCrae, B. (2011). Scientific literacy and student attitudes: Perspectives from PISA 2006 science. International Journal of Science Education, 33(1), 7–26.

Casem, R. Q., & Alicia, F. O. (2013). Scaffolding strategy in teaching mathematics: Its effects on students’ performance and attitudes. Comprehensive Journal of Educational Research, 1(1), 9–19.

Devolder, A., van Braak, J., & Tondeur, J. (2012). Supporting self-regulated learning in computer-based learning environments: Systematic review of effects of scaffolding in the domain of science education. Journal of Computer Assisted Learning, 28(6), 557–573.

Firman, H. (2007). Laporan Analisis Literasi Sains Berdasarkan Hasil PISA Nasional Tahun 2006. Jakarta: Balitbang Depdiknas.

Gilbert, J. K., & Treagust, F. (2009). Macro, submicro and symbolic representations and the relationships between them: Key models in chemical education. Dalam Multiple Representations in Chemical Education (hlm. 1–8). Dordrecht: Springer.

Gutierez, S. B. (2015). Integrating socio-scientific issues to enhance the bioethical decision-making skills of high school students. International Education Studies, 8(1). https://doi.org/10.5539/ies.v8n1p142

Guzel, B. Y., & Adadan, E. (2013). Use of multiple representations in developing preservice chemistry teachers’ understanding of the structure of matter. International Journal of Environmental & Science Education, 8(1), 109–130.

Hake, R. R. (2002). Relationship of individual student normalized learning gains in mechanics with gender, high school physics, and pretest score on mathematics and spatial visualization. Physics Education Research Conference.

Hsin-Yi Chang, & Hsiang-Chi Chang. (2013). Scaffolding students’ online critiquing of expert- and peer-generated molecular models of chemical reactions. International Journal of Science Education, 35(12), 2028–2056.

Hsin-Yi Chang, & Marcia, C. L. (2013). Scaffolding learning from molecular visualizations. Journal of Research in Science Teaching, 50(7), 858–886.

Jaber, L. Z., & Boujaoude, S. (2012). A macro–micro–symbolic teaching to promote relational understanding of chemical reactions. International Journal of Science Education, 34(7), 973–998.

Kawalkar, A., & Vijapurkar, J. (2013). The influence of students’ scientific attitudes toward learning outcomes in physics and high school learning independence through scaffolding-cooperative strategies. Thesis, Universitas Lampung, Bandar Lampung.

Kusuma, M. D., & Rosidin, U. (2013). Pengaruh sikap ilmiah terhadap hasil belajar dan kemandirian belajar melalui strategi scaffolding-kooperatif. Jurnal Pembelajaran Fisika, 1(2), 23–33.

Liliasari. (2007). Scientific concepts and generic science skills relationship in the 21st century science education. Proceedings of The First International Seminar of Science Education, 27 Oktober 2007, Bandung.

Maknun, D. (2014). Penerapan pembelajaran kontekstual untuk meningkatkan literasi sains dan kualitas argumentasi siswa Pondok Pesantren Daarul Uluum PUI Majalengka pada diskusi sosiosaintifik IPA. Jurnal Tarbiyah, 21(1).

OECD. (2015). Education at a Glance: OECD Indicators. OECD Publishing. Tersedia di: http://dx.doi.org/10.1787/eag2015-en. Diakses: 20 Desember 2016.

Panji, S., & Haninda, B. (2015). Pembelajaran matematika menggunakan scaffolding berbasis team assisted individualization (TAI). Seminar Nasional Matematika dan Pendidikan Matematika. Universitas Negeri Yogyakarta, Yogyakarta.

Shwartz, Y., Ben-Zvi, R., & Hofstein, A. (2006). The use of scientific literacy taxonomy for assessing the development of chemistry literacy among high-school students. Chemistry Education Research and Practice, 7(4), 203–225.

Slavin, R. E. (2006). Educational psychology: Theory and practice (8th ed.). Pearson Education, Inc., Upper Saddle River, New Jersey.

Soobard, R., & Rannikmäe, M. (2011). Assessing student’s level of scientific literacy using interdisciplinary scenarios. Science Education International, 22(2), 133–144.

Sunyono, Wirya, I. W., Suyadi, G., & Suyanto, E. (2009). Pengembangan model pembelajaran kimia berorientasi keterampilan generik sains pada mahasiswa SMA di Provinsi Lampung. Laporan Penelitian Hibah Bersaing Tahun I, Dikti, Jakarta.

Sunyono, Yuanita, L., & Ibrahim, M. (2015). Supporting students in learning with multiple representation to improve student mental models on atomic structure concepts. Science Education International, 26(2), 104–125.

Sunyono, & Sudjarwo, S. (2018, June). Mental models of atomic structure concepts of 11th grade chemistry students. Asia-Pacific Forum on Science Learning & Teaching, 19(1).

Suwono, H., Rizkita, L., & Susilo, H. (2015). Peningkatan literasi saintifik siswa SMA melalui pembelajaran biologi berbasis masalah sosiosains. Jurnal Ilmu Pendidikan, 21, 1–16.

Talanquer, V. (2011). Macro, submicro, and symbolic: The many faces of the chemistry “triplet.” International Journal of Science Education, 33(2), 179–195.

Wakhidah, N. (2016). Strategi scaffolding (IMWR) dalam menerapkan pendekatan saintifik dapat meningkatkan keterampilan proses sains dan penguasaan konsep (Disertasi). Universitas Negeri Surabaya, Surabaya.

Witte, D., & Kees, B. (2003). Testing of chemistry literacy (Chemistry in Context in the Dutch National Examination). Chemical Education International, 4(1), 1–15.

Zeidler, D. L., Sadler, T. D., Simmons, M. L., & Howes, E. V. (2005). Beyond STS: A research-based framework for socioscientific issues education. Science Education, 89, 357–377. https://doi.org/10.1002/sce.20048


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


View My Stats