Didactic Transposition of Absolute Value in Calculus Courses: Analyzing Curricula, Textbooks, and Classroom Instruction

M. Azhari Panjaitan(1,Mail), Turmudi Turmudi(2), Jarnawi Afgani Dahlan(3) | CountryCountry:


(1) Universitas Pendidikan Indonesia, Indonesia
(2) Universitas Pendidikan Indonesia, Indonesia
(3) Universitas Pendidikan Indonesia, Indonesia

MailCorresponding Author

DOI 10.23960/jpp.v15i1.pp388-402
Metrics→
              
Indexing Site→


Download Full Text: PDF

Copyright (c) 2025 M. Azhari Panjaitan, Turmudi Turmudi, Jarnawi Afgani Dahlan


Didactic Transposition of Absolute Value in Calculus Courses: Analyzing Curicula, Textbooks, and Classroom Instruction. Objective; This study aimed to analyze the knowledge to be taught in absolute value learning as part of the didactic transposition process. Method; A qualitative approach with a descriptive design was employed to examine curriculum documents and calculus textbooks as primary data sources. The research adopted a didactic transposition and praxeological framework to analyze the structure of absolute value instruction. The methodology included document selection based on inclusion criteria, content analysis of absolute value concepts in textbooks, comparison with theoretical praxeology models, and expert validation to ensure alignment with established mathematical and pedagogical principles. Triangulation was applied by analyzing multiple textbooks and curricula to enhance validity and reliability. Findings; The study results indicate that learning absolute value requires comprehensive material to bridge the transition of knowledge from school to university. Differential calculus textbooks introduce the absolute value concept with an initial definition as a non-negative value that geometrically represents distance, followed by a piecewise definition commonly found in high school textbooks. Content analysis reveals that task techniques related to absolute value material predominantly focus on perceptual, algebraic, and operational aspects, while graphical visualization is lacking, which hinders a thorough conceptual understanding. This highlights the contrast between the procedural approach in schools and the conceptual approach in universities, emphasizing the necessity of comprehensive materials to prevent learning obstacles. Conclusion; The findings emphasize the need for a more comprehensive presentation of absolute value in university calculus textbooks to support a smooth transition from school to higher education. The analysis revealed that while absolute value is introduced conceptually, the lack of graphical representation limits students' understanding. Additionally, inconsistencies between curriculum documents and learning materials indicate the necessity of aligning instructional resources. To prevent learning obstacles, it is recommended that absolute value content in differential calculus textbooks be presented in a complete and structured manner, integrating both procedural and conceptual approaches.

 

Keywords: knowledge to be taught, absolute value, didactic transposition.

Adinda, A., PARTA, N., & Chandra, T. D. (2021). Investigation of students’ metacognitive awareness failures about solving absolute value problems in mathematics education. Eurasian Journal of Educational Research, 95, 17–35.

Almog, N., & Ilany, B.-S. (2012). Absolute value inequalities: High school students’ solutions and misconceptions. Educational Studies in Mathematics, 81, 347–364.

Amani, R. A. D. S. S., & Mawarsari, V. D. (2019). Analisis kesulitan belajar siswa X IPS SMA Negeri 15 Semarang pada materi pertidaksamaan nilai mutlak. EDUSAINTEK, 3.

Amir, M. F. (2017). Identifikasi kesulitan mahasiswa dalam memecahkan masalah open ended materi nilai mutlak. Jurnal Mercumatika : Jurnal Penelitian Matematika Dan Pendidikan Matematika, 2(2), 1–15. https://doi.org/10.26486/jm.v2i2.291

Aziz, T. A., Supiat, & Soenarto, Y. (2019). Pre-service secondary mathematics teachers’ understanding of absolute value. Cakrawala Pendidikan, 38(1), 203–214. https://doi.org/10.21831/cp.v38i1.21945

Balacheff, N. (2023). Notes for a study of the didactic transposition of mathematical proof. ArXiv Preprint ArXiv:2305.18863.

Bosch, M., & Gascón, J. (2006). Twenty-five years of the didactic transposition. ICMI Bulletin, 58(58), 51–65.

Cahyani, R. G., Hadiprasetyo, K., & Wulandari, A. A. (2024). Analisis faktor penyebab kesulitan belajar matematika siswa kelas xi sma negeri 1 nguter pada kurikulum merdeka. Jurnal Ilmiah Multidisiplin, 1(6), 511–520. https://doi.org/10.62017/merdeka

Cahyaningtyas, O., Rahardi, R., & Irawati, S. (2021). Analisis kesalahan siswa dalam menyelesaikan soal persamaan dan pertidaksamaan nilai mutlak berdasarkan teori newman. Edumatica: Jurnal Pendidikan Matematika, 11(03), 104–117.

Chevallard, Y. (1992). A theoretical approach to curricula. Journal Fuer Mathematik-Didaktik, 13(2), 215–230.

Chevallard, Y., & Bosch, M. (2014). Didactic transposition in mathematics education bt - encyclopedia of mathematics education (S. Lerman (ed.); pp. 170–174). Springer Netherlands. https://doi.org/10.1007/978-94-007-4978-8_48

Chevallard, Y., & Bosch, M. (2020). Didactic transposition in mathematics education. Encyclopedia of Mathematics Education, 214–218.

Chevallard, Y., & Johsua, M.-A. (1985). La transposition didactique: du savoir savant au savoir enseigné. La Pensée Sauvage,.

Elia, I., Özel, S., Gagatsis, A., Panaoura, A., & Özel, Z. E. Y. (2016). Students’ mathematical work on absolute value: focusing on conceptions, errors and obstacles. ZDM, 48, 895–907.

Ellis, M. W., & Bryson, J. L. (2011). A conceptual approach to absolute value equations and inequalities. The Mathematics Teacher, 104(8), 592–598.

Fatimah, A. T., Zakiah, N. E., Sunaryo, Y., Gumilar, I., & Rusmana, I. (2020). Pengetahuan kontekstual, konseptual, dan prosedural siswa SMK pada pemecahan tugas konteks jangkauan. Jurnal THEOREMS (The Original Research of Mathematics), 4(2), 147–154.

Isnaini, M. (2022). Analisis kesulitan mahasiswa dalam menyelesaikan soal pertidaksamaan, fungsi dan limit pada mata kuliah kalkulus. Jurnal Amal Pendidikan, 3(3), 234–241.

Jupri, A., Usdiyana, D., & Gozali, S. M. (2022). Pre-service teachers’ strategies in solving absolute value equations and inequalities. Education Sciences, 12(11), 743.

Malinda, T. T., & Hidayati, W. S. (2022). Analisis kemampuan konseptual peserta didik dalam menyelesaikan soal nilai mutlak berdasarkan teori apos. Pi: Mathematics Education Journal, 5(1), 17–26.

Martono, K. (1999). Kalkulus. Jakarta: Erlangga.

Novianti, A., & Shodikin, A. (2018). Pengembangan bahan ajar kalkulus diferensial berbasis animasi dengan pendekatan kontekstual dan kearifan lokal. De Fermat: Jurnal Pendidikan Matematika, 1(2), 12–18.

Panjaitan, M. A. (2023). Desain didaktis pada pembelajaran persamaan dan pertidaksamaan nilai mutlak satu variabel. Universitas Pendidikan Indonesia.

Panjaitan, M. A., & Juandi, D. (2024). Analysis of problems in learning mathematics based on difficulties, errors, and misconceptions in the material of equations and inequality absolute values of one variable: systematic literature review. KnE Social Sciences, 316–324.

Ponce, G. A. (2008). Using, seeing, feeling, and doing absolute value for deeper understanding. MAtheMAtics TeAchinG in the Middle School, 14(4), 234–240.

Serhan, D., & Almeqdadı, F. (2018). Pre-service teachers’ absolute value equations and inequalities solving strategies and errors. The Eurasia Proceedings of Educational and Social Sciences, 10, 163–167.

Stewart, J. (2016). Calculus: early transcendentals 8th edition. Cengage Learning.

Stupel, M., & Ben-Chaim, D. (2014). Absolute value equations–what can we learn from their graphical representation? International Journal of Mathematical Education in Science and Technology, 45(6), 923–928.

Suryadi, D. (2019). Penelitian desain didaktis (DDR) dan implementasinya. Gapura Press Bandung.

Taylor, S. E., & Mittag, K. C. (2015). Easy absolute values? Absolutely. Mathematics Teaching in the Middle School, 21(1), 49–52.

Topphol, V. (2023). The didactic transposition of the fundamental theorem of calculus. In REDIMAT - Journal of Research in Mathematics Education (Vol. 12, Issue 2, pp. 144–172).

Varberg, D., Purcell, E., & Rigdon, S. (2013). Calculus: pearson new international edition. Pearson Higher Ed.

Wijayanti, D., & Winslow, C. (2017). Mathematical practice in textbooks analysis: Praxeological reference models, the case of proportion. REDIMAT, 6(3), 307–330.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


View My Stats